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Abstract
This paper reviews the state of artificial intelligence (AI) and the quest to create general AI with human-like cognitive 
capabilities. Although existing AI methods have produced powerful applications that outperform humans in specific 
bounded domains, these techniques have fundamental limitations that hinder the creation of general intelligent sys-
tems. In parallel, over the last few decades, an explosion of experimental techniques in neuroscience has significantly 
increased our understanding of the human brain. This review argues that improvements in current AI using mathemati-
cal or logical techniques are unlikely to lead to general AI. Instead, the AI community should incorporate neuroscience 
discoveries about the neocortex, the human brain’s center of intelligence. The article explains the limitations of current 
AI techniques. It then focuses on the biologically constrained Thousand Brains Theory describing the neocortex’s com-
putational principles. Future AI systems can incorporate these principles to overcome the stated limitations of current 
systems. Finally, the article concludes that AI researchers and neuroscientists should work together on specified topics 
to achieve biologically constrained AI with human-like capabilities.

Keywords  Limitations of narrow AI · General AI · Biologically constrained general AI · Common cortical algorithm · 
Neuroscience · Neocortex

1  Introduction

Artificial intelligence (AI) is the study of techniques that 
allow computers to learn, reason, and act to achieve goals 
[1]. Recent AI research has focused on creating narrow AI 
systems that perform one well-defined task in a single 
domain, such as facial recognition, Internet search, driv-
ing a car, or playing a computer game. AI research’s long-
term goal is to create general AI with human-like cognitive 
capabilities. Whereas narrow AI performs a single cognitive 
task, general AI would perform well on a broad range of 
cognitive challenges.

Machine learning is an essential type of narrow AI. It 
permits machines to learn from big data sets without 
being explicitly programmed. At the time of this writing 

(summer 2021), the international AI community focuses on 
a type of machine learning called deep learning. It is a fam-
ily of statistical techniques for classifying patterns using 
artificial neural networks with many layers. Deep learning 
has produced breakthroughs in image and speech recog-
nition, language translation, navigation, and game playing 
[2, Ch. 1].

This tutorial-style review assesses the state of AI 
research and its applications. It first compares human 
intelligence and AI to understand what narrow AI sys-
tems, especially deep learning systems, can and cannot do. 
The paper argues that today’s mathematical and logical 
approaches to AI have fundamental limitations preventing 
them from attaining general intelligence even remotely 
close to human beings. In other words, the non-biological 
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path of narrow AI does not lead to intelligent machines 
that understand and act similarly to humans.

Next, the article concentrates on the biological path to 
general AI offered by the field of neuroscience. The review 
focuses on the Thousand Brains Theory by Jeff Hawkins and 
his research team (numenta.com). The theory uncovers 
the computational principles of the neocortex, the human 
brain’s center of intelligence. The review outlines a compu-
tational model of intelligence based on these neocortical 
principles. The model shows how future AI systems can 
overcome the stated limitations of current deep learning 
systems. Finally, the review summarizes essential insights 
from the neocortex and suggests cooperation between 
neuroscientists and AI researchers to create general AI.

The review article caters to a broad readership, includ-
ing students and practitioners, with expertise in AI or neu-
roscience, but not both areas. The main goal is to intro-
duce AI experts to neuroscience (Sects. 4–6). However, we 
also want to introduce neuroscientists to AI (Sects. 2 and 
3) and create a shared understanding, facilitating coop-
eration between the areas (Sect. 7). Since the relevant 
literature is vast, it is impossible to reference all articles, 
books, and online resources. Therefore, rather than adding 
numerous citations to catalog the many AI and neurosci-
ence researchers’ contributions, the authors have prior-
itized well-written books, review articles, and tutorials. 
Together, these sources and their references constitute a 
starting point for readers to learn more about the intersec-
tion between AI and neuroscience and the reverse engi-
neering of the human neocortex.

2 � Types of intelligence

This section introduces and contrasts human intelligence 
with narrow and general AI.

2.1 � Human intelligence

Human intelligence is the brain’s ability to learn a model of 
the world and use it to understand new situations, handle 
abstract concepts, and create novel behaviors, including 
manipulating the environment [3, 4]. The brain and the 
body are massively and reciprocally connected. The com-
munication is parallel, and information flows both ways. 
The philosophers George Lakoff and Mark Johnson [5, 6] 
have emphasized the importance of the brain’s sensorimo-
tor integration, i.e., the integration of sensory processing 
and generation of motor commands.

It is the sensorimotor mechanisms in the brain that 
allow people to perceive and move around. Sensorimo-
tor integration is also the basis for abstract reasoning. 
Humans have so-called embodied reasoning because the 

sensorimotor mechanisms shape their abstract reasoning 
abilities. The structure of the brain and body, and how it 
functions in the physical world, constrains and informs the 
brain’s capabilities [5, Ch. 3].

2.2 � AI for computers

AI researchers have traditionally favored mathematical and 
logical rather than biologically constrained approaches to 
creating intelligence [7, 8]. In the past, classical or symbolic 
AI applications, like expert systems [9] and game playing 
programs, deployed explicit rules to process high-level 
(human-readable) input symbols. Today, AI applications 
use artificial neural networks to process vectors of numeri-
cal input symbols. In both cases, an AI program running 
on a computer processes input symbols and produces 
output symbols. However, unlike the brain’s sensorimotor 
integration and embodied reasoning, current AI is almost 
independent of the environment. The AI programs run 
internally on the computer without much interaction with 
the world through sensors.

2.3 � Learning algorithms

A typical AI system (with a neural network) analyzes an 
existing set of data called the training set. The system uses 
a learning algorithm to identify patterns and probabilities 
in the training set and organizes them in a model that gen-
erates outputs in the form of classifications or predictions. 
The system can then run new data through the model to 
obtain answers to questions such as “what should be the 
next move in a digital game?” and “should a bank customer 
receive a loan?” There are three broad categories of learn-
ing algorithms in AI, where the first two use static training 
sets and the third uses a fixed environment.

Supervised learning The training set contains examples 
of input data and corresponding desired output data. 
We refer to the training set as labeled since it connects 
inputs to desired outputs. The learning algorithm’s goal 
is to develop a mapping from the inputs to the outputs.
Unsupervised learning The training set contains only 
input data. The learning algorithm must find patterns 
and features in the data itself. The aim is to uncover hid-
den structures in the data without explicit labels. Unsu-
pervised learning is more complicated and less mature 
than supervised learning.
Reinforcement learning The training regime consists 
of an agent taking actions in a fixed artificial environ-
ment and receiving occasional rewards. The goal of the 
learning algorithm is to make optimal actions based on 
these rewards. One of the first successful examples of 
reinforcement learning was the TD-Gammon program 
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[10], which learned to play expert-level backgammon. 
TD-gammon played hundreds of thousands of games 
and received one reward (win/lose) for each game.

The differences between the three learning types are not 
always obvious, especially when multiple methods are 
combined to train a single system. An important distinc-
tion is whether a learning algorithm continues to learn 
after the initial training phase. Typical AI systems do not 
learn after training, no matter the type of learning algo-
rithm they use. Once training is complete, the systems 
are frozen and rigid. Any changes require retraining the 
entire system from scratch. The ability to keep learning 
after training is often called continuous learning.

2.4 � Narrow and general AI

We discriminate between narrow and general AI. Nar-
row AI is a set of mathematical techniques typically using 
fixed training sets to generate classifications or predic-
tions. Each narrow AI system performs one well-defined 
task in a single domain. The best narrow or single-task AI 
systems outperform humans. However, most narrow AI 
systems must retrain with new training sets to learn other 
tasks. The ultimate goal of general AI, also called artificial 
general intelligence, is to achieve or surpass human-level 
performance on a broad range of tasks and learn new ones 
on the fly. General AI systems have common sense knowl-
edge, adapt quickly to new situations, understand abstract 
concepts, and flexibly use their knowledge to plan and 
manipulate the environment to achieve goals. This paper 
does not assume that general AI requires human-like sub-
jective experiences, such as pain and happiness, but see 
[11] for a different view.

3 � Status of AI

The human brain’s limits are due to the biological circuits’ 
slow speed, the limited energy provided by the body, and 
the human skull’s small volume. Artificial systems have 
access to faster circuits, more energy, and nearly limit-
less short- and long-term memory with perfect recall [1]. 
Whereas the embodied brain can only learn from data 
received through its biological senses (such as sight and 
hearing), there is nearly no limit to the sensors an AI sys-
tem can utilize. A distributed AI system can simultaneously 
be in multiple places and learn from data not available to 
the human brain. Although artificial systems are not lim-
ited to brain-like processing of sensory data from natural 
environments, they have not achieved general intelli-
gence. This section discusses the strengths and limitations 
of AI systems as compared to human intelligence.

3.1 � Strengths of narrow AI

We may associate both a natural and a human-made sys-
tem with a big set of discrete states. A narrow AI system 
running on a fast computer can explore more of this state 
space than the human brain to determine desirable states. 
Furthermore, machines have the processing power to be 
more precise and the memory to store everything. These 
are the reasons why machine learning can outperform 
humans in bounded, abstract domains [2, Ch. 1]. Whereas 
most such AI programs require vast labeled training sets 
generated by humans, one fascinating program, Alp-
haZero [12], achieved superhuman performance using 
reinforcement learning and Monte Carlo tree search. Alp-
haZero trained to play the board games Go, chess, and 
shogi without any human input (apart from the basic rules 
of chess) by playing many games against itself.

Other examples of AI-based applications that outper-
form humans are warehouse robots using vision to sort 
merchandise and security programs detecting and miti-
gating a large number of attacks [1]. Whereas a human 
learns mostly from experience, which is a relatively slow 
process, a narrow AI system can make many copies of 
itself to simultaneously explore a broad set of possibili-
ties. Often, these systems can discard adverse outcomes 
with little cost.

AI and human cooperation in human-in-the-loop sys-
tems have enormous possibilities because narrow AI aug-
ments people’s ability to organize data, find hidden pat-
terns, and point out anomalies [13]. For example, machine 
translation can produce technically accurate texts, but 
human translators must translate idioms or slang correctly. 
Likewise, narrow AI helps financial investors determine 
what and when to trade, improves doctors’ diagnoses of 
patients, and assists with predictive maintenance in many 
areas by detecting anomalies.

AI applications could learn together with people and 
provide guidance. Novices entering the workforce might 
get AI assistants that offer support on the job. Although 
massive open online courses (MOOCs) need human teach-
ers to encourage and inspire undergraduates, the MOOCs 
might use AI to personalize and enhance student feed-
back. AI could determine what topics the students find 
hard to learn and suggest how to improve the teaching. In 
short, humans working with narrow AI programs may be 
critical to solving challenging problems in future.

3.2 � Limitations of narrow AI

AlphaZero and all other narrow AI programs do not know 
what they do. They cannot transfer their performance to 
other domains and could not even play tic-tac-toe without 
a redesign and extensive practice. Furthermore, creating a 
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narrow AI solution with better-than-human performance 
requires much engineering work, including selecting the 
best combination of training algorithms, adjusting the 
training parameters, and testing the trained system [14]. 
Even with reinforcement learning, narrow AI systems are 
proxies for the people who made them and the specific 
training environments.

Most learning algorithms, particularly deep learning 
algorithms, are greedy, brittle, rigid, and opaque [15, 16]. 
The algorithms are greedy because they demand big 
training sets; brittle because they frequently fail when 
confronted with a mildly different scenario than in the 
training set; rigid because they cannot keep adapting after 
initial training; and opaque since the internal representa-
tions make it challenging to understand their decisions. In 
practice, deep learning systems are black boxes to users. 
These shortcomings are all serious, but the core problem 
is that all narrow AI systems are shallow because they lack 
abstract reasoning abilities and possess no common sense 
about the world.

It can be downright dangerous to allow narrow AI 
solutions to operate without people in the loop. Narrow 
AI systems can make serious mistakes no sane human 
would make. For example, it is possible to make subtle 
changes to images and objects that fool machine learn-
ing systems into misclassifying objects. Scientists have 
attached stickers to traffic signs [17], including stop signs, 
to fool machine learning systems into misclassifying them. 
MIT students have tricked an AI-based vision system into 
wrongly classifying a 3D-printed turtle as a rifle [18]. The 
susceptibility to manipulation is a big security issue for 
products that depend on vision, especially self-driving 
cars. (See Meredith Broussard’s overview [19, Ch. 8] of the 
obstacles to creating self-driving cars using narrow AI.) 
While AI solutions do not make significant decisions from 
single data points, more work is needed to make AI sys-
tems robust to deliberate attacks.

3.3 � There is no general AI (Yet)

A general AI system needs to be a wide-ranging problem 
solver, robust to obstacles and unwelcome surprises. It 
must learn from setbacks and failures to come up with 
better strategies to solve problems. Humans integrate 
learning, reasoning, planning, and communication skills 
to solve various challenging problems and reach common 
goals. People learn continuously and master new func-
tions without forgetting how to perform earlier mastered 
tasks. Humans can reason and make judgments utilizing 
contextual information way beyond any AI-enhanced 
device. People are good at idea creation and innova-
tive problem solutions—especially solutions requiring 
much sensorimotor work or complex communication. No 

artificial entity has achieved this general intelligence. In 
other words, general AI does not yet exist.

4 � The biological path to general AI

The international AI community struggles with the same 
challenging problems in common sense and abstract 
reasoning as they did six decades ago [15, 20]. However, 
lately, some AI researchers have realized that neuroscience 
could be essential to create intelligent machines [21]. This 
section introduces the field of computational neurosci-
ence and the biological path to general AI.

4.1 � Computational neuroscience

Neuroscience has long focused on experimental tech-
niques to understand the fundamental properties of 
brain cells, or neurons, and neural circuits. Neuroscien-
tists have conducted many experiments, but less work 
successfully distills principles from this vast collection of 
results. A theoretical framework is needed to understand 
what the results tell us about the brain’s large-scale com-
putation. Such a framework must allow scientists to cre-
ate and test hypotheses that make sense in the context of 
earlier findings.

The book by Peter Sterling and Simon Laughlin [3] goes 
a long way toward making sense of many neuroscience 
findings. Their theoretical framework outlines organizing 
principles to explain why the brain computes much more 
efficiently than computers. Although the framework helps 
to understand the brain’s low-level design principles, it 
provides little insight into the algorithmic or high-level 
computational aspects of human intelligence. We, there-
fore, need an additional framework to determine the 
brain’s computational principles.

Computational neuroscience is a branch of neuroscience 
that employs experimental data to build mathematical 
models and carry out theoretical analyses to understand 
the principles that govern the brain’s cognitive abilities. 
Since the field focuses on biologically plausible models of 
neurons and neural systems, it is not concerned with bio-
logically unrealistic disciplines such as machine learning 
and artificial neural networks. Patricia S. Churchland and 
Terrence J. Sejnowski addressed computational neurosci-
ence’s foundational ideas in a classic book from 1992 [22].

Sejnowski published another book [2] in 2018, docu-
menting that the deep learning networks are biologically 
inspired, but not biologically constrained. These narrow 
AI systems need many more examples to recognize new 
objects than humans, suggesting that reverse engineer-
ing of the brain could lead to more efficient biologically 
constrained learning algorithms. To carry out this reverse 
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engineering, we need to view the brain as a hierarchical 
computational system consisting of multiple levels, one on 
top of the other. A level creates new functionality by com-
bining and extending the functionality of lower levels [4].

We focus on a specific area of the brain known as the 
neocortex, the primary brain area associated with intel-
ligence. The neocortex is an intensely folded sheet with 
a thickness of about 2.5 mm. When laid out flat, it has the 
size of a formal dinner napkin. The neocortex constitutes 
roughly 70 percent of the brain’s volume and contains 
more than 10 billion neurons (brain cells). A typical neuron 
(Fig. 1) has one tail-like axon and several treelike exten-
sions called dendrites. When a cell fires, an electrochemical 
pulse or spike travels down the axon to its terminals.

A signal jumps from an axon terminal to the receptors 
on a dendrite of another neuron. The axon terminal, the 
receptors, and the cleft between them constitute a syn-
apse. The axon terminal releases neurotransmitters into 
the synaptic cleft to signal the dendrite. Thus, the neuron 
is a signaling system where the axon is the transmitter, 
the dendrites are the receivers, and the synapses are the 
connectors between the axons and dendrites. Neurons in 
the neocortex typically have between 1,000 and 20,000 
synapses.

The neocortex consists of regions engaged in cognitive 
functions. As we shall see, the neocortical regions realizing 
vision, language, and touch operate according to the same 
principles. The sensory input determines a region’s pur-
pose. The neocortex generates body movements, includ-
ing eye motions, to change the sensory inputs and learn 
quickly about the world.

At the time of this writing, there exist many efforts in 
computational neuroscience to reverse engineer mam-
malian brains, especially to understand the computational 
principles of the neocortex [23]. Considerable reverse 

engineering efforts include the US government program 
Machine Intelligence from Cortical Networks, the Swiss Blue 
Brain Project, and the Human Brain Project funded mainly 
by the EU. However, so far, these projects have not assimi-
lated their research results into frameworks.

The research laboratory Numenta has shared a frame-
work, the Thousand Brains Theory [24], based on known 
computational principles of the neocortex. This theory 
describes the brain’s biology in a way that experts can 
apply to create general AI. We later focus on a particular 
realization of the Thousand Brains Theory to illuminate the 
path to biologically constrained general AI. Jeff Hawkins’ 
first book [25] describes an early version of the theory to 
non-experts. His second book [26] contains an updated 
theory description for the non-specialist.

4.2 � Biological constraints

To understand why we consider the biological path toward 
general AI, we observe that the limited progress toward 
intelligent systems after six decades of research strongly 
indicates that few investigative paths lead to general AI. 
Many paths seem to lead nowhere. Since guidance is 
needed to discover the right approach in a vast space of 
algorithms containing few solutions, the AI community 
should focus on the only example we have of intelligence, 
namely the brain and especially the neocortex. Although 
it is possible to add mathematical and logical methods to 
biologically plausible algorithms based on the neocortex, 
the danger is that non-biological methods cause scientists 
to follow paths that do not lead to general AI.

This article’s premise is that, until the AI community 
deeply understands the nature of intelligence, we treat 
biological plausibility and neuroscience constraints as 
strict requirements. Using neuroscience findings, Hawkins 
argues [25–27] that continued work on today’s narrow AI 
techniques cannot lead to general AI because the tech-
niques are missing necessary biological properties. We 
consider six properties describing the “data structures” and 
“architecture” of the neocortex, starting with three data 
structure properties:

Sparse data representations A computer uses dense 
binary vectors of 1s and 0s to represent types of data 
(ASCII being an example). A deep learning system uses 
dense vectors of real numbers where a large fraction 
of the elements are nonzero. These representations are 
in stark contrast to the highly sparse representations 
in the neocortex, where at a point in time, only a small 
percentage of the values are nonzero. Sparse repre-
sentations allow general AI systems to efficiently rep-
resent and process data in a brain-like manner robust to 

Fig. 1   Neuron with multiple dendrites and one axon. A synapse 
consists of an axon terminal, a cleft, and receptors on a dendrite of 
another neuron
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changes caused by internal errors and noisy data from 
the environment.
Realistic neuron model Nearly all artificial neural net-
works use very simple artificial neurons. The neocortex 
contains neurons with dendrites, axons, synapses, and 
dendritic processing. General AI systems based on the 
neocortex need a more realistic neuron model (Fig. 1) 
with brain-like connections to other neurons.
Reference frames General AI systems must be able to 
make predictions in a dynamic world with constantly 
changing sensory input. This ability requires a data 
structure that is invariant to both internally generated 
movements and external events. The neocortex uses 
reference frames to store all knowledge and has mech-
anisms that map movements into locations in these 
frames. General AI systems must incorporate models 
and computation based on movement through refer-
ence frames.

Next, we focus on three fundamental architectural proper-
ties of the neocortex:

Continuous online learning Whereas most narrow AI 
systems use offline, batch-oriented, supervised learn-
ing with labeled training data, the learning in the neo-
cortex is unsupervised and occurs continuously in real 
time using data streaming from the senses. The ability 
to dynamically change and “rewire” the connections 
between brain cells is vital to realize the neocortex’s 
ability to learn continuously [28].
Sensorimotor integration Body movements allow the 
neocortex to actively change its sensory inputs, quickly 
build models to make predictions, and detect anoma-
lies, and, thus, perceive the physical and cultural envi-
ronments. Similarly, general AI systems based on the 
neocortex must be embodied in the environment and 
actively move sensors to build predictive models of the 
world.
Single general-purpose algorithm The neocortex learns 
a detailed model of the world across multiple sensory 
modalities and at multiple levels of abstraction. As 
first outlined by Vernon Mountcastle [29], all neocor-
tex regions are fundamentally the same and contain a 
repeating biological circuitry that forms the common 
cortical algorithm. (Note that there are variations in cell 
types, the ratio of cells, and the number of cell layers 
between the neocortical regions.) Understanding and 
implementing such a common cortical algorithm may 
be the only path to scalable general-purpose AI sys-
tems.

5 � Overview of the HTM model

The term hierarchical temporal memory (HTM) describes 
a specific realization of the Thousand Brains Theory. HTM 
builds models of physical objects and conceptual ideas to 
make predictions, and it generates motor commands to 
interact with the surroundings and test the predictions. 
The continuous testing allows HTM to update the predic-
tive models and, thus, its knowledge, leading to intelligent 
behavior in an ever-changing world [25–27, 30].

This section first explains how HTM’s general structure 
models the neocortex. It then discusses each HTM part 
in more detail. To provide a compact, understandable 
description of HTM, we simplify the neuroscience, keep-
ing only essential information.

5.1 � General structure

We first consider the building blocks of the neocortex, the 
neurons. Many neurons in the neocortex are excitatory, 
while others are inhibitory. When an excitatory neuron 
fires, it causes other neurons to fire. If an inhibitory neuron 
fires, it prevents other neurons from firing. The HTM model 
includes a mechanism to inhibit neurons, but it focuses 
on the excitatory neurons’ functionality since about 80% 
of the neurons in the neocortex are excitatory [23, Ch. 
3]. Because the pyramidal neurons [31] constitute the 
majority of the excitatory neurons, HTM contains abstract 
pyramidal neurons called HTM neurons.

The HTM model consists of regions of HTM neurons. 
The regions are divided into vertical cortical columns [29], 
as shown in Fig. 2. All cortical columns have the same 
laminar structure with six horizontal layers on top of each 
other (Fig. 3). Five of the layers contain mini-columns [32] 
of HTM neurons. A neuron in a mini-column connects to 
many other neurons in complicated ways (not shown in 
Fig. 3). A mini-column in the neocortex can span multiple 
layers. All cortical columns run essentially the same learn-
ing algorithm, the previously mentioned common cortical 
algorithm, based on their common circuitry.

The HTM regions connect in approximate hierarchies. 
Figure 4 illustrates two imperfect hierarchies of vertically 
connected regions with horizontal connections between 
the hierarchies. All regions in a hierarchy integrate sensory 

Fig. 2   Cortical columns in a region of the neocortex
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and motor information. Information flows up and down in 
a hierarchy and both ways between hierarchies.

Building on the general structure of HTM, the rest of the 
section explains how the HTM parts fulfill the previously 
listed data structure properties (sparse data representa-
tions, realistic neuron model, and reference frames) and 
the architectural properties (continuous online learning, 
sensorimotor integration, and single general-purpose 
algorithm). It also describes how the HTM parts depend 
on each other.

5.2 � Sparse distributed representations (SDRs)

Empirical evidence shows that every region of the neocor-
tex represents information using sparse activity patterns 
made up of a small percentage of active neurons, with the 
remaining neurons being inactive. An SDR is a set of binary 
vectors where a small percentage of 1s represent active 
neurons, and the 0s represent inactive neurons. The small 
percentage of 1s, denoted the sparsity, varies from less 
than one percent to several percent. SDRs are the primary 
data structure used in the neocortex and used everywhere 
in HTM systems. There is not a single type of SDRs in HTM 
but distinct types for various purposes.

While a bit position in a dense representation like ASCII 
has no semantic meaning, the bit positions in an SDR 
represent a particular property. The semantic meaning 
depends on what the input data represents. Some bits 
may represent edges or big patches of color; others might 
correspond to different musical notes. Figure 5 shows a 
somewhat contrived but illustrative example of an SDR 
representing parts of a zebra. If we flip a single bit in a 
vector from a dense representation, the vector may take 
an entirely different value. In an SDR, nearby bit positions 
represent similar properties. If we invert a bit, then the 
description changes but not radically.

The mathematical foundation for SDRs and their rela-
tionship to the HTM model is described in [33–35]. SDRs 
are crucial to HTM. Unlike dense representations, SDRs 
are robust to large amounts of noise. SDRs allow HTM 
neurons to store and recognize a dynamic set of patterns 
from noisy data. Taking unions of sparse vectors in SDRs 
make it possible to perform multiple simultaneous pre-
dictions reliably. The properties described in [33, 34] also 
determine what parameter values to use in HTM software. 
Under the right set of parameters, SDRs enable a massive 
capacity to learn temporal sequences and form highly 
robust classification systems.

Every HTM system needs the equivalent of human 
sensory organs. We call them “encoders.” A set of encod-
ers allows implementations to encode data types such as 
dates, times, and numbers, including coordinates, into 
SDRs [36]. These encoders enable HTM-based systems 
to operate on other data than humans receive through 
their senses, opening up the possibility of intelligence in 

Fig. 3   Single cortical column in HTM with six layers, where five lay-
ers contain mini-columns of HTM neurons

Fig. 4   Two approximate hierarchies of vertically connected regions 
with horizontal connections between the hierarchies

Fig. 5   Simplified SDR for a zebra. Adapted from [23]
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areas not covered by humans. An example is small intel-
ligent machines operating at the molecular level; another 
is intelligent machines operating in toxic environments to 
humans.

5.3 � HTM neurons

Biological neurons are pattern recognition systems that 
receive a constant stream of sparse inputs and send out-
puts to other neurons represented by electrical spikes 
known as action potentials [37]. Pyramidal neurons, the 
most common neurons in the neocortex, are pretty dif-
ferent from the typical neurons modeled in deep learning 
systems. Deep learning uses so-called point neurons, which 
compute a weighted sum of scalar inputs and send out 
scalar outputs, as shown in Fig. 6a. Pyramidal neurons are 
significantly more complicated. They contain separate and 
independent zones that receive diverse information and 
have various spatiotemporal properties [38].

Figure 6b illustrates how the HTM neuron models the 
structure of pyramidal neurons (the synapses and details 
about the signal processing are left out). The HTM neuron 
receives sparse input from artificial dendrites, segregated 
into areas called the apical (feedback signals from upper 
layers), basal (signals within the layer), and proximal (feed-
forward input) integration zones. Each dendrite in the api-
cal and basal integration zones is an independent process-
ing entity capable of recognizing different patterns [37].

In pyramidal neurons, when one or more dendrites 
in the apical or basal zone detect a pattern, they gen-
erate a voltage spike that travels to the pyramidal cell 
body or soma. These dendritic spikes do not directly cre-
ate an action potential but instead cause a temporary 
increase in the cell body’s voltage, making it primed to 
respond quickly to subsequent feedforward input. The 

HTM neuron models these changes using one of three 
states: active, predictive, or inactive. In the active state, 
the neuron outputs a 1 on the artificial axon analogous 
to an action potential; in the other states, it outputs a 
0. Patterns detected on the proximal dendrite drive the 
HTM neuron into the active state, representing a natural 
pyramidal neuron firing. Pattern matching on the basal 
or apical dendrites moves the neuron into the predictive 
state, representing a primed cell body that is not yet firing.

5.4 � Continuous online learning

To understand how HTM learns time-based sequences or 
patterns, we consider how the network operates before 
describing the connection-based learning. Consider a layer 
in a cortical column. Figure 7 depicts a layer of mini-col-
umns with interconnected HTM neurons (connections not 
shown). This network receives a part of a noisy sequence 
at each time instance, given by a sparse vector from an 
SDR encoder. All HTM neurons in a mini-column receive 
the same subset of bits on their proximal dendrites, but 
different mini-columns receive different subsets of the 
vector. The mini-columns activate neurons, generating 
1s, to represent the sequence part. (Here, we assume that 
the network has learned a consistent representation that 
removes noise and other ambiguities.)

Each HTM neuron predicts its activation, i.e., moves into 
the predictive state in various contexts by matching dif-
ferent patterns on its basal or apical dendrites. Figure 8 
depicts dark gray neurons in the predictive state. Accord-
ing to this prediction, input on the feedforward dendrites 
will move the neuron into the active state in the follow-
ing time instance. To illustrate how predictions occur, let 
a network’s context be the states of its neurons at time 
t − 1 . Some neurons move to the predictive state at time 
t based on the previous context (Fig. 8a). If the context 
contains feedback projections from higher levels, the 
network forms predictions based on high-level expecta-
tions (Fig. 8b). In both cases, the network makes temporal 
predictions.

Learning occurs by reinforcing those connections that 
are consistent with the predictions and penalizing con-
nections that are inconsistent. HTM creates new connec-
tions when predictions are mistaken [37]. When HTM first 
creates a network of mini-columns, it randomly generates 

Fig. 6   a The point neuron is a simple model neuron that calculates 
a weighted sum of its inputs and passes the result through a non-
linearity. b Sketch of the HTM neuron adapted from [37]. The feed-
forward input determines whether the soma moves into the active 
state and fires a signal on the axon. The sets of feedback and con-
text dendrites determine whether the soma moves into the predic-
tive state

Fig. 7   A layer of HTM neurons 
organized into mini-columns. 
The black HTM neurons repre-
sent 1s and the rest represent 
0s
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potential connections between the neurons. HTM assigns 
a scalar value called “permanence” to each connection. The 
permanence takes on values from zero to one. The value 
represents the longevity of a connection as illustrated in 
Fig. 9.

If the permanence value is close to zero, there is a 
potential for a connection, but it is not operative. If the 
permanence value exceeds a threshold, such as 0.3, then 
the connection becomes operative, but it could quickly 
disappear. A value close to one represents an operative 
connection that will last for a while. A (Hebbian-like) rule, 
using only information local to a neuron, increases and 
decreases the permanence value. Note that while neural 
networks with point neurons have fixed connections with 
real weights, the operative connections in HTM networks 
have weight one, and the inoperative connections have 
weight zero.

The whole HTM network operates and learns as follows. 
It receives a new consecutive part of a noisy sequence at 
each time instance. Each mini-column with HTM neurons 
models a competitive process in which neurons in the 
predictive state emit spikes sooner than inactive neurons. 
HTM then deploys fast local inhibition to prevent the inac-
tive neurons from firing, biasing the network toward the 
predictions. The permanence values are then updated 
before the process repeats at the next time instance.

In short, a cyclic sequence of activations, leading to 
predictions, followed by activations again, forms the 
basis of HTM’s sequence memory. HTM continually learns 
sequences with structure by verifying its predictions. 
When the structure changes, the memory forgets the old 
structure and learns the new one. Since the system learns 
by confirming predictions, it does not require any explicit 
teacher labels. HTM keeps track of multiple candidate 
sequences with common subsequences until further input 
identifies a single sequence. The use of SDRs makes net-
works robust to noisy input, natural variations, and neuron 
failures [35, 37].

5.5 � Reference frames

We have outlined how networks of mini-columns learn 
predictive models of changing sequences. Here, we start 
to address how HTM learns predictive models of static 
objects, where the input changes due to sensor move-
ments. We consider how HTM uses allocentric reference 
frames, i.e., frames around objects [24, 39]. Sensory fea-
tures are related to locations in this object-centrix refer-
ence frame. Changes due to movement are then mapped 
to changes of locations in the frame, enabling predictions 
of what sensations to expect when sensors move over 
an object.

To understand the distinction between typical deep 
learning representations and a reference frame-based 
representation, consider JPEG images of a coffee mug vs. 
a 3D CAD model of the mug. On the one hand, an AI sys-
tem that uses just images would need to store hundreds of 
pictures taken at every possible orientation and distance 
to make detailed predictions using image-based represen-
tations. It would need to memorize the impact of move-
ments and other changes for each object separately. Deep 
learning systems today use such brute-force image-based 
representations.

On the other hand, an AI system that uses a 3D CAD 
representation would make detailed predictions once it 
has inferred the orientation and distance. It only needs 
to learn the impact of movements once, which applies to 
all reference frames. Such a system could then efficiently 
predict what would happen when a machine’s sensor, such 
as an artificial fingertip, moves from one point on the mug 

Fig. 8   A layer of HTM neurons organized into mini-columns makes 
predictions represented by dark gray neurons. Predictions are 
based on context. a If the context represents the previous state of 
the layer, then the layer acts as a sequence memory. b If the con-

text consists of top-down feedback, the layer forms predictions 
based on high-level expectations. c If the context consists of an 
allocentric (object-centrix) location signal, the layer makes sensory 
predictions based on location within an external reference frame

Fig. 9   The permanence value’s effect on connections between 
HTM neurons
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to another, independent of how the cup is oriented rela-
tive to the machine.

Every cortical column in HTM maintains allocentric ref-
erence frame models of the objects it senses. Sparse vec-
tors represent locations in the reference frames. A network 
of HTM neurons uses these sparse location signals as con-
text vectors to make detailed sensory predictions (Fig. 8c). 
Movements lead to changes in the location signal, which 
in turn leads to new forecasts.

HTM generates the location signal by modeling grid 
cells, initially found in the entorhinal cortex, the primary 
interface between the hippocampus and neocortex [40]. 
Animals use grid cells for navigation and represent their 
body location in an allocentric reference frame, namely 
that of the external environment. As an animal moves 
around, the cells use internal motion signals to update the 
location signal. HTM proposes that every cortical column 
in the neocortex contains cells analogous to entorhinal 
grid cells. Instead of representing the body’s location in 
the reference frame of the environment, these cortical grid 
cells represent a sensor’s location in the object’s reference 
frame. The activity of grid cells represents a sparse location 
signal used to predict sensory input (Fig. 8c).

5.6 � Sensorimotor integration

Sensorimotor integration occurs in every cortical column 
of the neocortex. Each cortical column receives sensory 
input and sends out motor commands [41]. In HTM, 
sensorimotor integration allows every cortical column 
to build reference-frame models of objects [24, 39, 42]. 
Each cortical column in HTM contains two layers called 
the sensory input layer and the output layer, as shown 
in Fig. 10. The sensory input layer receives direct sensory 
input and contains mini-columns of HTM neurons, while 
the output layer contains HTM neurons that represent 
the sensed object. The sensory input layer learns specific 
object feature/location combinations, while the output 
layer learns representations corresponding to objects 
(see [42] for details).

During inference, the sensory input layer of each cor-
tical column in Fig. 10 receives two sparse vector sig-
nals. First, a location signal computed by grid cells in the 

lower half of the cortical column (not shown) [24, 30, 39, 
43]. Second, feedforward sensory input from a unique 
sensor array, such as the area of an artificial retina. The 
input layer combines sensory input and location input to 
form sparse representations that correspond to features 
at specific locations on the object. Thus, the cortical col-
umn knows both what features it senses and where the 
sensor is on the object.

The output layer receives feedforward inputs from 
the sensory input layer and converges to a stable pat-
tern representing the object. The second layer achieves 
convergence in two ways: (1) by integrating information 
over time as the sensors move relative to the object and 
(2) spatially via lateral (sideways) connections between 
columns that simultaneously sense different locations 
on the same object. The lateral connections across the 
output layers permit HTM to quickly resolve ambiguity 
and deduce objects based on adjacent columns’ partial 
knowledge. Finally, feedback from the output layer to 
the sensory input layer allows the input layer to more 
precisely predict what feature will be present after the 
sensor’s subsequent movement.

The resulting object models are stable and invariant 
to a sensor’s position relative to the object, or equiva-
lently, the object’s position relative to the sensor. All 
cortical columns in any region of HTM, even columns 
in the low-level regions (Fig. 4), can learn representa-
tions of complete objects through sensors’ movement. 
Simulations show that a single column can learn to rec-
ognize hundreds of 3D objects, with each object con-
taining tens of features [42]. The invariant models enable 
HTM to learn with very few examples since the system 
does not need to sense every object in every possible 
configuration.

5.7 � The need for cortical hierarchies

Because the spatial extent of the lateral connections 
between a region’s columnar output layers limits the abil-
ity to learn expansive objects, HTM uses hierarchies of 
regions to represent large objects or combine information 
from multiple senses. To illustrate, when a person sees and 
touches a boat, many cortical columns in the visual and 
somatosensory hierarchies, as illustrated in Fig. 4, observe 

Fig. 10   Three connected corti-
cal columns in a region. The 
layer generating the location 
signal is not shown. Adapted 
from [42]
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different parts of the boat simultaneously. All cortical col-
umns in each of the two hierarchies learn models of the 
boat by integrating over movements of sensors. Due to 
the non-hierarchical connections, represented by the 
horizontal connections in Fig. 4, inference occurs with the 
movement of the different types of sensors, leading to a 
rapid model building. Observe that the boat models in 
each cortical column are different because they receive 
different information depending on their location in the 
hierarchy, information processing in earlier regions, and 
signals on lateral connections.

Whenever HTM learns a new object, a type of neuron, 
called a displacement cell, enables HTM to represent the 
object as a composition of previously learned objects [24]. 
For example, a coffee cup is a composition of a cylinder 
and a handle arranged in a particular way. This object 
compositionality is fundamental because it allows HTM to 
learn new physical and abstract objects efficiently without 
continually learning from scratch. Many objects exhibit 
behaviors. HTM discovers an object’s behavior by learn-
ing the sequence of movements tracked by displacement 
cells. Note that the resulting behavioral models are not, 
first and foremost, internal representations of an external 
world but rather tools used by the neocortex to predict 
and experience the world.

5.8 � Toward a common cortical algorithm

Cortical columns in the neocortex, regardless of their sen-
sory modality or position in a hierarchy, contain almost 
identical biological circuitry and perform the same basic 
set of functions. The circuitry in all layers of a column 
defines the common cortical algorithm. Although the 
complete common cortical algorithm is unknown, the 
current version of HTM models fundamental parts of this 
algorithm.

Section 5.4 describes how a single layer in a cortical 
column learns temporal sequences. Different layers use 
this learning technique with varying amounts of neurons 
and different learning parameters. Section 5.5 introduces 
reference frames, and Sect. 5.6 outlines how a cortical 
column uses reference frames. Finally, Sect. 5.7 describes 
how columns cooperate to infer quickly and create com-
posite models of objects by combining previously learned 
models. A reader wanting more details about the common 
cortical algorithm’s data formats, architecture, and learn-
ing techniques should study references [24, 30, 33–37, 39, 
42, 44, 45].

Although HTM does not provide a complete description 
of the common cortical algorithm, we can summarize its 
novel ideas, focusing on how grid and displacement cells 
allow the algorithm to create predictive models of the 
world. The new aspects of the model building are [24, 30]:

–	 Cortical grid cells provide every cortical column with a 
location signal needed to build object models.

–	 Since every cortical column can learn complete models 
of objects, an HTM system creates thousands of models 
simultaneously.

–	 A new class of neurons, called displacement cells, enables 
HTM to learn how objects are composed of other objects.

–	 HTM learns the behavior of an object by learning the 
sequence of movements tracked by displacement cells.

–	 Since all cortical columns run the same algorithm, HTM 
learns conceptual ideas the same way it learns physical 
objects by creating reference frames.

Each cortical column in HTM builds models indepen-
dently as if it is a brain in itself. The name Thousand Brains 
Theory denotes the many independent models of an 
object at all levels of the region hierarchies, and the exten-
sive integration between the columns [24, 30].

6 � Validation and future work

We have developed an understanding of the Thousand 
Brains Theory and the HTM model of the neocortex. This 
section discusses HTM simulation results, commercial use 
of HTM, a technology demonstration concerning SDRs, 
and the need to reverse engineer the thalamus to obtain 
a more complete neocortical model.

6.1 � Simulation results

From Sect. 5.4, a layer in a cortical column contains an 
HTM network with mini-columns of HTM neurons. The 
fundamental properties of HTM networks are continuous 
online learning, incorporation of contextual information, 
multiple simultaneous predictions, local learning rules, 
and robustness to noise, loss of neurons, and natural vari-
ation in input. The Numenta research team has published 
simulation results [35, 37, 45] verifying these properties.

The simulations show that HTM networks function 
even when nearly 40% of the HTM neurons are disabled. 
It follows that individual HTM neurons are not crucial to 
network performance. The same is true for biological neu-
rons. Furthermore, HTM networks have a cyclic sequence 
of operations: activations, leading to predictions, followed 
by activations again. Since HTM learns continuously the 
cycle never stops. Simulations show that with a continuing 
stream of sensory inputs, learning converges to a stable 
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representation when the input sequence is stable, and 
changes whenever the input sequences change. It then 
converges to a stable representation again if there are no 
further changes. Hence, HTM networks continuously adapt 
to changes in input sequences, as the networks forget old 
sequence structures and learn new ones.1 Finally, the HTM 
model achieves comparable accuracy to other state-of-
the-art sequence learning algorithms, including statisti-
cal methods, feedforward neural networks, and recurrent 
neural networks [45].

Sections 5.5–5.7 outline how cortical columns learn 
models of objects using grid cells, displacement cells, and 
reference frames. Numenta’s simulation results show that 
individual cortical columns learn hundreds of objects [39, 
42, 44]. Recall that a cortical column learns features of 
objects. Since multiple objects can share features, a single 
sensation is not always enough to identify an object unam-
biguously. Simulations show that multiple columns work-
ing together reduce the number of sensations needed 
to recognize an object. The HTM reliably converges on a 
unique object identification as long as the model param-
eters have reasonable values [39].

HTM’s ability to learn object models is vital to achieve 
general AI because cortical columns that learn a language 
or do math also use grid cells, displacement cells, and 
reference frames. A future version of HTM should model 
abstract reasoning in the neocortex. In particular, it should 
model how the neocortex understands and speaks a lan-
guage, allowing an intelligent machine to communicate 
with humans and explain how it reached a goal.

6.2 � Commercial use of HTM

Numenta has three commercial partners using HTM. The 
first partner, Cortical.io, uses core principles of SDRs in 
its platform for semantic language understanding. For 
example, the platform automates the extraction of essen-
tial information from contracts and legal documents. 
The company has Fortune 500 customers. Grok, the sec-
ond partner, uses HTM anomaly detection in IT systems 
to detect problems early. Operators can then drill down 
to severe anomalies and take action before problems 
worsen. The third partner, Intelletic Trading Systems, is a 
fintech startup. The company has developed a platform for 
autonomous trading of futures and other financial assets 
using HTM. The described commercial usage documents 
HTM’s practical relevance.

6.3 � Sparsity accelerates deep learning networks

Augmented deep learning networks like AlphaZero have 
achieved spectacular results. Still, they are hitting bottle-
necks as researchers attempt to add more compute power 
and training data to tackle ever-more complex problems. 
During training, the networks’ data processing consumes 
vast amounts of power, sometimes costing more than a 
million dollars, limiting scalability. The neocortex is much 
more energy efficient, requiring less than 20 Watts to 
operate. The primary reasons for the neocortex’s power 
efficiency are SDRs and the highly sparse connectiv-
ity between the neocortical neurons. Deep learning has 
dense data representations and dense networks.

Numenta has created sparse deep learning networks on 
field programmable gate array (FPGA) chips requiring no 
more than 225 Watts to process SDRs. Using the Google 
Speech Commands dataset, 20 identical sparse networks 
running in parallel performed inference 112 times faster 
than multiple comparable dense networks running in par-
allel. All networks ran on the same FPGA chip and achieved 
similar accuracy (see [46]). The vast speed improvement 
enables massive energy savings, the use of much larger 
networks, or multiple copies of the same network running 
in parallel. Perhaps, most importantly, sparse networks can 
run on limited edge platforms where dense networks do 
not fit.

6.4 � Thalamus

The thalamus is a paired, walnut-shaped structure in the 
center of the brain. It consists of dozens of groups of cells, 
called nuclei. The neuroanatomists Ray Guillery and Mur-
ray Sherman wrote the book Functional Connections of Cor-
tical Areas: A New View from the Thalamus [41] describing 
the tight couplings between the nuclei in the thalamus 
and regions of the neocortex. As shown in Fig. 11, nearly 
all sensory information coming into the neocortex flows 
through the thalamus. A cortical region sends information 
directly to another region, but also indirectly via the thala-
mus. These indirect routes between the regions strongly 
indicate that it is necessary to understand the operations 
of the thalamus to fully understand the neocortex. Guillery 
and Sherman make a convincing case that the computa-
tional aspects of the thalamus must be reverse-engineered 
and added to HTM [47].

7 � Takeaways

According to this paper’s biological reasoning, the 
improvement of existing narrow AI techniques alone is 
unlikely to bring about general AI. Current AI is reactive 

1  Note that the predicted state is internal to the neuron and does 
not drive subsequent activity. As such, for each input the network 
activity settles immediately until the next input arrives, and the 
network cannot diverge in the classic sense.
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rather than proactive. While humans learn continu-
ously from data streams and make updated predictions, 
today’s AI systems cannot do the same. As an absolute 
minimum to create general AI, more biologically plausi-
ble neuron models must replace the point neurons used 
in artificial neural networks. The new neuron models 
must allow the networks to predict their future states.

Furthermore, it is necessary to use SDRs to enable 
multiple simultaneous predictions and achieve robust-
ness to noise and natural variations in the data. There is 
a great need for improved unsupervised learning using 
reference frames. Finally, a particularly severe problem 
with current AI is the lack of sensorimotor integration 
providing the ability to learn by interacting with the 
environment.

Table 1 summarizes the actionable takeaways from 
the article. The left column lists fundamental problems 
with narrow AI, while the right column contains solu-
tions proposed by neuroscience studies of the neocor-
tex. HTM models these solutions. To achieve biologically 
constrained, human-like intelligence, AI researchers 
need to work with neuroscientists to understand the 
computational aspects of the neocortex and determine 
how to implement them in AI systems. They also need 
to reverse engineer the thalamus to understand how the 
neocortex’s regions work together. This accomplishment 

would lead to an overall understanding of the neocortex 
and, most likely, facilitate the creation of general AI.

Numenta has published simulations of core HTM 
properties, and commercial products use HTM. However, 
there is still a need to demonstrate HTM’s full potential 
because—in contrast to deep learning with AlphaZero—
there is no HTM application with proven superhuman 
capabilities. A powerful application based on the neo-
cortex would validate the importance of biologically con-
strained AI in general and HTM in particular. It would also 
convince more talented young researchers to follow the 
biological path toward general AI.
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